
CEGAR example • November 2016

Working out an example with CEGAR

Shubham Sahai Srivastava

Indian Institute of Technology, Kanpur
ssahai@cse.iitk.ac.in

Abstract

In this article we will briefly introduce the abstraction refinement approach (CEGAR) [1] [2], developed
by Clarke et. al.. CEGAR is an automatic iterative abstraction refinement technique for symbolic model
checking. We will work with an example, and will demonstrate how the different steps of CEGAR
algorithm work to generate an abstract model, which is free from the spurious counterexample encountered.

1. Introduction

In today’s world software and hardware system are being used in all walks of life, ranging from
our smart phones to the life critical pacemakers, from secure networking protocols to controllers of
auto-mobile, aircraft and power grids. Due to this unprecedented mix of technology with our day
to day lives, any defect in software and hardware system can prove to be fatal, as well as extremely
costly. Hence, the need to effectively verify the correctness of the system is of utmost importance.
There are different techniques which can be used for verification of the system, depending on
which phase of the development life cycle the system currently is. These technique range from
peer reviewing, to testing, simulation, and formal verification. In this article we will focus on the
formal verification techniques to verify the systems, specifically the model checking technique.

Model checking is an automatic, model based, property verification approach which have been
successfully used for past few decades to verify software and hardware systems. It verifies whether
a system satisfies its specification by (i) representing the system as a finite Kripke structure, (ii)
writing the specification in suitable temporal logic, and (iii) algorithmically checking whether the
Kripke structure models the specification formula. But, in order to verify large systems, the major
hurdle that one needs to overcome is the state explosion problem. State space abstraction is one
of the several ways to handle the state explosion problem. It has proven successful in verifying
large system designs, but, up till the year 2000, it was a manual process, requiring insight and
creativity. There was an utmost need to automate this process of abstraction, in order to handle
larger projects having industrial complexity.

In the year 2000 Clarke et. al. developed a technique to achieve the same (see [1], [2]).
Counterexample guided abstraction refinement (CEGAR) is a technique, in which given a model
(M) of the system and a specification (ϕ), automatically generates an abstract model (M̂), such
that, M � ϕ ⇔ M̂ � ϕ. The approach can be summarized as, given a specification and model
of the system, generate an initial abstract model(M̂) for the corresponding model, and then
iteratively refine it, using the spurious counterexample that gets generated while model checking
(M̂) for the specification ϕ. We essentially repeat this process until we find an abstraction, which
satisfies our end goal (i.e. M � ϕ⇔ M̂ � ϕ).

In this article, we will briefly discuss this CEGAR technique (in Section 2) and then we will
examine the working of CEGAR with the help of an example (in section 3). We will see how each
step of the technique work using our example model and one spurious counterexample that exists
in the model.

1

mailto:ssahai@cse.iitk.ac.in

CEGAR example • November 2016

2. Overview of CEGAR

Model Checking is an automatic, model based, property verification approach. It is intended to be
used for the formal verification of concurrent, reactive systems. In model checking we model the
system as a finite state transition system, and the properties to be verifies in some suitable logic.
We then apply the verification algorithm to verify whether the model satisfies the given property
or not. It has been successfully applied for decades to verify hardware and software systems.

The process of model checking can be generalised as :

1. Modelling System

Any system that need to be verified, can be fundamentally broken down into:

• Set of atomic propositions
• Set of states, which can be intuitively thought of as the screen shot of the system at any

instant. It captures the state of the variables of the system at an instant.
• Transition relation, which defines transition from one state to another.

In model checking, the system that needs to be verified is formally represented as a finite
Kripke Structure. It can be thought of as a directed graph, whose vertices represent the
states of the system, with one or more states being initial states and the edges represent
the transition between the states. Thus, formally a Kripke structure of a set A of atomic
proposition can be defined as

M = (S, I, R, L)

where,

• S : set of states,
• I ⊂ S : set of initial states,
• R ⊆ S2 : set of transition relation
• L : S→ 2A : labelling function, which labels each state with the set of atomic proposition

that are true at that particular state.

2. Specification of Properties

We want capture the properties that the system should satisfy. These properties need to be
specified in some appropriate logic. We have, propositional logic, predicate logic and other
higher order logic at or disposal. But, we need to capture the notion of time, which can not
be done by these simple logic. Hence, we switch our attention to temporal logic.

Temporal Logic is the logic extended with the notion of time, such that, it can capture the
future behaviour of the system. The truth value of a formula in Temporal Logic is defined
with respect to a model. Also, a temporal formula is not statically true or false in a model. It
can be true in some states and false in other states.

CTL∗, a sub class of branching time temporal logic, which is an extension of propositional
logic obtained by adding path quantifiers (A, E) and temporal operators (X, G, F, U). ACTL∗

is a subset of CTL∗ where only the path quantifier A is used, and negation is restricted to
the atomic formulas. An important feature of ACTL∗ is the existence of counterexamples.

3. Model Checking Problem

Given a Kripke structureM and a specification φ in some temporal logic, the model checking
problem is the problem of finding all states s, such thatM, s � ϕ and checking if the inittial
states are among these.

2

CEGAR example • November 2016

A practical problem in model checking is the state explosion problem. Kripke structure represent
the state space of the system under consideration. So, its size is exponential in terms of the
description of the system. Hence, even for systems of small size, it is often not feasible to compute
their Kripke Structure explicitly. There are several techniques to handle this state explosion
problem, like the use of BDD and symbolic model checking, bounded model checking, partial
order reduction. But, in this article we will focus on Abstraction techniques and CEGAR (counter
example guided abstraction refinement).

2.1 Abstraction

The main goal of abstraction is to reduce the state space by some means. The basic idea is to
remove the irrelevant details and simplify the components. This would generate an abstract model
corresponding to a concrete model. Now, as the abstract model is smaller, hence it would be easier
to verify. But, naturally abstraction comes with information loss. An over approximation of concrete
space, leads to false negatives. On the other hand, an under approximation leads to false positives.

Intuitively speaking, abstraction partitions the concrete state space of the Kripke structure
into clusters, and treat these clusters as new abstract space. Formally, an abstraction function h is
defined as a surjective mapping h : S→ Ŝ, where S is the set of concrete states and Ŝ is the set of
abstract space. Also, this surjection h induces an equivalence relation ≡h on the domain S, in the
following manner. Let d, e ∈ S, then

d ≡h e, iff h(d) = h(e)

The corresponding abstract Kripke structure generated by abstraction function h, is given by

M̂ = (Ŝ, Î, R̂, L̂)

where,
• Ŝ : set of abstract states,
• Î(d̂) iff ∃d ∈ I, h(d) = d̂,
• R̂(d̂1, d̂2) iff ∃d1, d2 ∈ S such that,

h(d1) = d̂1 ∧ h(d2) = d̂2 ∧ R(d1, d2),
• L̂(d̂) = ∪h(d)=d̂L(d) .
An abstraction function h is said to be appropriate for a specification ϕ if none of the sub

formulas of ϕ can differentiate two equivalent states d, e ∈ S, i.e., for all sub formulas f of ϕ and
∀d, e ∈ S, we have :

d ≡h e⇒ (d � f ⇔ e � f)

.
For an abstract state d̂, we say L̂(d̂) is consistent, if all the concrete states corresponding to d̂,

have same label. Consequently, L̂(d̂) = L(d), where d is some concrete state corresponding to d̂.
The following theorem captures the one sided correctness of the abstract model.

Theorem 2.1. Let h be appropriate for ACTL∗ specification ϕ. ThenM′ � ϕ⇒M � ϕ.

But, we cannot directly claim thatM′ 6� ϕ⇒M 6� ϕ. This is because, existential approximation
leads to false positives. As a result of which, the counterexample generated might be spurious,
that was introduced by the abstraction, but, does not exist in the original model. Hence, we need
to detect if the counterexample is spurious, and refine the model if it is spurious. In the next
section we discuss an automatic technique to do the same.

3

CEGAR example • November 2016

2.2 Counterexample Guided Abstraction Refinement : CEGAR

CEGAR is an efficient, automatic abstraction refinement technique, where we begin with small
abstract representation of the system to be verified, which essentially preserves the control
structure of the program. This representation is referred as the initial abstraction of the system. We
model check this abstract model, if no bug is found, we can conclude that the concrete model is
also safe and exit.

But, if any counterexample is found, it might have been generated due to the over-approximation
of the system. We check whether this counterexample is valid or not. To do this, we try to find
the trace of the concrete states, corresponding to the abstract states in the counterexample. If
this counterexample corresponds to the concrete trace, we conclude that the counterexample is
concrete and the model does not satisfy the specification. On the other hand, no concrete trace
exists corresponding to the counterexample, we call such counterexamples as spurious.

If the spurious counterexample is found, we use it to refine the abstract model in hand,
to generate a finer abstraction, in which we get rid of this counterexample. We repeat this
process, until we can conclude that the system satisfies the specification, by getting rid of all the
counterexamples. Or, we conclude that the system does not satisfy the specification, by generating
a concrete counterexample. Next, we briefly describe the individual steps of CEGAR.

1. Generating initial abstraction :

Given a program P , its corresponding model M and specification ϕ, we want an initial
abstraction function h, such that,

(a) h is appropriate for ϕ, and
(b) h preserves the control flow skeleton of P .

For a set of formulas F , we say two states are F -equivalent, if we cannot distinguish them
by the formulas in F i.e. ∀d, e ∈ S, ∀ f ∈ F , d � f ⇔ e � f . It can be shown that if
F ⊇ Atoms(ϕ), then the corresponding abstraction function hF is appropriate for ϕ, where,
the function Atoms() return the set of atomic formulas.

Combining the observations above, we can define the initial abstraction function (init) as
hAtoms(P). It can be shown that init is appropriate for ϕ.

Next, we examine, how to generate the initial abstract model, corresponding to a given
program P . Let V be the set of variables in P , and, F = Atoms(P). Then,

• We begin by partitioning F into the set of Formula Clusters, such that no two formula
clusters share common variables.

• The set of Formula clusters, induce a natural partition on the set of variables V, known
as variable clusters.

• For each of these variable clusters, we define an abstraction function, such that the
abstract states are consistent with the cluster formulas.

• The Cartesian product of all cluster abstractions, will give us our final abstraction.

2. Checking for spurious counterexample :

We can generate the initial abstract model, corresponding to the initial abstraction function
from the previous section. We model check this abstract model M̂ , to determine if M̂ satisfies
the specification ϕ. If it does, then we can conclude that the original model Mwill also
satisfy ϕ. On the other hand, if it doesn’t, then the model checker produces a counterexample.
In this section we will examine the counterexample, and check if it is concrete or spurious.

4

CEGAR example • November 2016

For the sake of simplicity, we will first handle the case, when the counterexample T̂ is given
by a path 〈ŝ1, · · · , ŝn〉. The intuitive idea is to generate the set of paths in the concrete
model, corresponding to the given path T̂ in the abstract model. We can define a function
h−1(ŝ) := {s | h(s) = ŝ}, and, we can further extend h−1, to the set of paths as :

h−1(T̂) ==

{
〈s1, · · · sn〉

∣∣∣∣∣ n∧
i=1

h(si) = ŝi ∧ I(s1)
n−1∧
i=1

R(si, si+1

}

Clearly, for a concrete counterexample, the above set h−1(T̂) is not empty. Further, we can
define the set of reachable states corresponding to the abstract state in T̂, S1 = h−1(ŝi) ∩ I,
and ∀i, Si := Img(Si−1, R) ∩ h−1(ŝi, where Img(Si−1, R) is the forward image of Si−1 with
respect to transition relation R. It can be shown that, if T̂ is a concrete counterexample, then
∀i ∈ [1, n], Si 6= φ.

Algorithm 1 utilizes this observation to check if the counterexample is concrete or spurious.
In case the counterexample is concrete, the algorithm outputs "Counterexample exists",
otherwise, it returns the index j for which Sj = φ, and the failure state, which is the previous
state Sprev corresponding to Sj. We represent Sprev as failure state, as there were no outgoing
transitions from Sprev to Sj.

Algorithm 1 : splitPATH(T̂,M , M̂)

Require: Counterexample T̂ having length n, and modelsM , M̂
1: S← h−1(ŝ1) ∩ I
2: j← 1
3: while S 6= φ and j < n do
4: j← j + 1
5: Sprev ← S
6: S← Img(S, R) ∩ h−1(ŝj)
7: if S 6= φ then
8: return "Counterexample exists"
9: else

10: return j, Sprev

If the counterexample is found to be spurious, we move to the refinement step, to refine our
abstract model in such a way, that we get rid of this counterexample in the new abstract
model.

Remark. In case the counterexample is a loop, we can reduce to problem to path counterexamples, by
unwinding the loop ω number of times, where, ω is the size of the smallest abstract state occurring in
the loop.

3. Abstraction refinement : In the previous section, if the counterexample turns out to be a
spurious one, then we need to refine our model, such that in the new refined model, this
counterexample is eliminated.

5

CEGAR example • November 2016

Examining the failure state in some more detail, we can classify the set of concrete states
corresponding to the abstract state as for a counterexample :

• Dead-end state (SD) : The set of states which are reachable from the initial states, but do
not have any outgoing edges to the next state.

• Bad state (SB) : The set of states that have outgoing edges to the next state, but are not
reachable from the initial state.

• Irrelevant state (SI): All the other states.

Its the coexistence of the dead-end states and the bad states in the same state, that results in
generating spurious counterexample. Hence, we want to separate SD and SB in our refined
model. It can be seen clearly, that doing this will eliminate this counterexample in this
refined model.

We define the projection set, for a given set X ⊆ S, an index j, and an element a ∈ Dj
as : Proj(X, j, a) = {(s1, · · · , sj−1, sj+1, · · · , sm)|(s1, · · · , sj−1, a, sj+1, · · · , sm) ∈ X}. It can be
shown as a necessary condition, that for two states d, e ∈ S, if Proj(SD, j, d) 6= Proj(SD, j, e)
then every refinement must separate d and e. Algorithm 2 utilizes this property of projection
function, to refine the abstract model.

Algorithm 2 : polyRefine

1: for j← 1 to m do
2: ≡′j :=≡j
3: for every a, b ∈ Ej do
4: if proj(SD, j, a) 6= proj(SD, j, b) then
5: ≡′j :=≡′j \ {(a, b)}

3. Working Example

Let us consider a hypothetical scenario of a chemical factory, where two chemicals C1 and C2 are
being mixed in an insulated tank. The chemicals being highly reactive, we want to regulate their
respective temperature, before they are added to the tank for mixing. The temperature difference
between chemicals should be at least 60◦C at all times. Also, the chemicals themselves should be in
their respective recommended temperature ranges : 20◦C− 22◦C for chemical C1 and 80◦C− 82◦C
for chemical C2. Whenever the temperature of the chemicals, reach there respective maximum
limit, we need to stop the reaction, reset the temperature to their lower limit and start the reaction
again. If at any time, both the chemicals are 2◦C above their prescribed range, the reaction could
be highly explosive and we would need to evacuate the facility and shut it down to ensure safety.

We would want to have a controller, which automatically regulates the temperatures of the
two chemicals, and ensures that they are always in their respective safety limits. Basically, we do
not want to encounter a situation, where we have to evacuate the facility. The code presented in
Figure 1, claims to handle this situation. We want to formally verify the claim.

3.1 Modelling the system

The given example (Figure 1) presents the C code for the controller. As the first step, we would
model the system, to obtain the corresponding Kripke structure and then formally present the
specification in suitable temporal logic.

6

CEGAR example • November 2016

1 void main () {
2 i n t t1 = 2 0 ; // Temperature corresponding to chemical 1
3 i n t t2 = 8 0 ; // Temperature corresponding to chemical 2
4 while (1) {
5 i f (t2−t 1 == 60) {
6 i f (t 2 != 82) {
7 t 1 = 2 0 ;
8 t 2 ++;
9 }

10 e l s e i f (t2 == 82) {
11 t 1 = 2 0 ;
12 t 2 = 8 0 ;
13 }
14 }
15 i f (t 2 − t 1 > 60) {
16 t 1 ++;
17 }
18 i f (t 1 == 24 && t2 == 84) {
19 E v a c u a t e F a c i l i t y () ; // Auxi l iary code f o r invoking s e c u r i t y measures
20 }
21 }
22 }

Figure 1: Program (P) for handling the hypothetical scenario of the chemical factory described above

1. Generating Kripke Structure :

Program P given above, comprises of 2 variables t1 and t2, having Integer domain. But, in
the program above, not all Integer values can be achieved. So we can restrict the domain
of the variable to the values of interest. Hence, the domain of variable t1 is given by
Dt1 = {20, 21, 22, 23, 24} and domain for t2 is given by Dt2 = {80, 81, 82, 83, 84}. So, the
state space for P would be S = Dt1 × Dt2. The set of atomic propositions in P is given by
A = {(t2− t1 = 60), (t2 = 82), (t2− t1 > 60), (t1 = 24), (t2 = 84)}. The Kripke structure
M corresponding to P can be defined as :

M = (S, I, R, L)

where,

• S = Dt1 × Dt2,
• I = {(20, 80)},
• R ⊆ S2 : set of transition relation (show in Figure 2),
• L : S→ 2A : labelling function, which labels each state with the set of atomic proposition

from A, that are true at that particular state.

Remark. The set of transition relation R can be obtained from the control structure of the given
program P specified is lines 5− 17, i.e. by considering any state (t1, t2), we can directly obtain the
next state (t̂1, t̂2) from line lines 5− 17 in P .

2. Specification : We want to formally specify the property, that we want to be true in P . As,
discussed above, we do not want to reach a situation, where we would have to evacuate the
facility. From the code above, we can see clearly, that the function EvacuateFacility(), is called
only when t1 = 24 and t2 = 84. Hence, we can state the property that needs to be true as : It
should never be the case that t1 = 24 and t2 = 84.

7

CEGAR example • November 2016

t1

20

21

22

23

24

t2

80 81 82 83 84

Figure 2: Transition relation R for program P

Formally, we can represent this property in ACTL* as : ϕ := AG
(
¬
(
(t1 = 24)∧ (t2 = 84)

))
.

3.2 Applying CEGAR

In the previous section, we had constructed the model of the given program P . In this section, we
will apply the CEGAR technique on the given modelM , in order to generate a corresponding
abstract model M̂ , such thatM � ϕ⇔ M̂ � ϕ). We will follow the outline presented in Section
2.2.

1. Generating Initial Abstraction :

We have the model M of the program P and our aim is to automatically generate the
initial abstraction ofM . The set of atomic propositions in P is A = {(t2− t1 = 60), (t2 =
82), (t2− t1 > 60), (t1 = 24), (t2 = 84)}. We can clearly see, that the entire set A would
form a single Formula Cluster, as every formula interferes (have atleast one common variable)
with atleast one of the formula. This results in a single variable cluster, i.e. {t1, t1}.
Next, we want to generate the equivalence classes for the set S, with respect to the formula
cluster A. Note, that any two pair of states correspond to the same equivalence class, iff
they cannot be distinguished by the atomic formulas of the formula cluster A. We give the
equivalence classes in Table 1 :

The initial abstraction function init, is given by hA, which maps any two concrete states
d, e ∈ S, to the same abstract states, if we can not distinguish d and e by the formulas in A,
i.e. d � f , iff e � f , ∀ f ∈ A. Table 1 gives the mapping generated by this initial abstraction
function, hA, and the corresponding equivalence classes.

Now, for the abstract model M̂ , can be formally given by: M̂= {Ŝ, Î, R̂, L̂}, where,

• Ŝ = {0̂, 1̂, 2̂, 3̂, 4̂, 5̂, 6̂, 7̂, 8̂, 9̂},
• Î = {0̂}.

8

CEGAR example • November 2016

Abstract state Concrete states Labels for concrete states

0̂ {(20, 80), (21, 81), (23, 83)} {(t2− t1 = 60)}

1̂
{(20, 81), (20, 83), (21, 83),

(22, 83)} {(t2− t1 > 60)}

2̂ {(20, 82), (21, 82)} {(t2 = 82), (t2− t1 > 60)}
3̂ {(22, 82)} {(t2− t1 = 60), (t2 = 82)}

4̂
{(20, 84), (21, 84), (22, 84),

(23, 84} {(t2− t1 > 60), (t2 = 84)}

5̂ {(24, 84)} {(t2− t1 = 60), (t1 = 24), (t2 = 84)}
6̂ {(23, 82)} {(t2 = 82)}
7̂ {(24, 82)} {(t1 = 24), (t2 = 82)}
8̂ {(24, 80), (24, 81), (24, 83)} {(t1 = 24)}

9̂
{(21, 80), (22, 80), (23, 80),

(22, 81), (23, 81)} {}

Table 1: Initial abstraction function

0̂start 1̂ 2̂ 3̂ 4̂

9̂ 8̂ 7̂ 6̂ 5̂

Figure 3: Transition relation R̂ corresponding to abstract model M̂

• The transition relation R̂ is shown in Figure 3.
• The labels for each state in M̂ , is given by the 3rd column in Table 1.

2. Checking for spurious counterexample :

We have the abstract model M̂ and the specification ϕ for the program P . The next step
is to model checking for this abstract model. Model checking would either claim that the
M̂models ϕ, in which case we conclude that M also models the specification ϕ. On the
other hand, it might generate a counterexample, which if found to be spurious, would mean
we need to refine our model, and if found to be a correct one, would mean that the original
system also does not models the specification. In this section, we will examine one of the
generated counterexample, and will decide if that counterexample is spurious or a concrete
one.

In our example, the specification would be False, if we have to evacuate the facility. It can
be seen clearly, that the function EvacuateFacility(), would be called iff, t1 = 24 and t2 = 84.
Hence, we can say ϕ is False iff state 5̂ is reachable in the abstract model M̂ . Clearly, from
the transition diagram given in Figure 3, we can see that 5̂ is reachable. Hence, as of now,

9

CEGAR example • November 2016

for the model M̂ , the specification ϕ is not True. Let us consider, one of the counterexample
that could be generated, T̂ = {0̂, 1̂, 0̂, 2̂, 3̂, 0̂, 4̂, 5̂} . In this section we will apply Algorithm 1(

splitPATH
(

T̂,M , M̂
))

, on this counterexample, and will examine if T̂ is a concrete or a
spurious counterexample.

Step 1 of the algorithm, gives us the concrete initial states from the modelM , corresponding
to the first state of the counterexample (in this case, the abstract state 0̂). For T̂, from step 1,
we get S = {(20, 80)}.
Next, we enter the loop in steps 3− 6. The subsequent set of concrete states, reachable from
the initial states are given by : S1 = {(20, 81)}, S2 = {(21, 81)}, S3 = {(20, 82), (21, 82)},
S4{(22, 82)}, S5 = {((20, 80)}, S6 = φ. The loop exits, as we have encountered a state S6 = φ,
and the algorithm returns j = 7, and the failure state : 0̂ (which was the present value of
Sprev).

From this output of the algorithm splitPATH
(

T̂,M , M̂
)
, we can conclude the following :

(a) The counter example T̂ is spurious and we need to go to the refinement step, to refine
our abstract model M̂

(b) The failure state in the model is the state 0̂, i.e. this state comprises of both dead-end
states and bad states.

(c) The edge between the 6th and the 7th node in the counterexample T̂, does not correspond
to any edge in the concrete model.

3. Abstraction Refinement :

In the previous section we have found that the counterexample T̂ is the spurious one. In
this section, using T̂ and the failure state (0̂) returned by the algorithm splitPATH

(
T̂, M ,

M̂
)
, we will refine our abstract model, to generate a new model in which this spurious

counterexample is eliminated. After that we will again model check the new abstract model
and repeat the above procedure.

In our case, the failure state is 0̂ = {(20, 80), (21, 81), (23, 83)}. We want to identify the set
of dead-end states and bad states corresponding to this failure state. Using figure 2, we can
see that, here the corresponding set SD = {(20, 80), (21, 81)}, as they are reachable from the
initial state and do not have any outgoing edge to the next state i.e. 4̂. Also, SB = {(23, 83)},
as this state is not reachable from the initial state, but has an outgoing edges to the next state
i.e. 4̂.

Applying algorithm 2 (polyRefine), we separate SD and SB from 0̂, thereby generating two
different states, 0̂′ and 0̂′′. The new abstract model generated after splitting 0̂, is shown in
the Kripke Structure in Figure 4.

As it can be seen clearly in the Figure 4, that there still exists a path from initial state to the
state 5̂. Hence, the new refined model still does not satisfy the specification ϕ. Hence, model
checking this refined model, will still generate a counter example and we will need to verify
whether this new counterexample is concrete or spurious. Hence, we need to repeat Step 2 and 3
again, until, we are free from counterexample and could claim that the original model satisfies the
specification ϕ, or we generate a counterexample and hence, claim the the original model does not
satisfy the specification ϕ.

10

CEGAR example • November 2016

0̂′start 1̂ 2̂ 3̂ 4̂

0̂′′ 9̂ 8̂ 7̂ 6̂ 5̂

Figure 4: New transition relation R̂′ corresponding to the new abstract model M̂ , obtained after splitting the state 0̂
into two different states 0̂′ and 0̂′′.

0̂start 1̂′ 2̂ 3̂ 4̂ 5̂

1̂′′ 0̂′ 9̂ 8̂ 7̂ 6̂

Figure 5: Transition relation R̂ corresponding to final abstract model M̂

4. Conclusion

In this article, we gave overview of Counterexample guided abstraction refinement technique,
introduced by Clarke et.al. [1]. We also worked out an example, where we examined how various
steps of CEGAR work in order to generate a refined abstract model.

As discussed in previous section, the abstract model obtained in Figure 4 still does not satisfy
the specification. We can clearly see a path from initial state to the state 5̂. But, as it turns out,
even this path is spurious. On applying the above steps of CEGAR again on any counterexample,
we will get the state 1̂ as the failure state.

The final refined model is shown in Figure 5. As we can see clearly, in this final model, there is
no path from initial state to 5̂. Hence, this final model, satisfies the specification ϕ. Consequently,
the original modelM also satisfies the specification ϕ.

References

[1] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided abstraction
refinement,” Computer Aided Verification: 12th International Conference, CAV 2000, Chicago, IL,
USA. Proceedings, pp. 154–169, July 2000.

11

CEGAR example • November 2016

[2] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided abstraction
refinement for symbolic model checking,” J. ACM, vol. 50, pp. 752–794, September 2003.

12

	Introduction
	Overview of CEGAR
	Abstraction
	Counterexample Guided Abstraction Refinement : CEGAR

	Working Example
	Modelling the system
	Applying CEGAR

	Conclusion

